skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wood, Ian"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 4, 2026
  2. null (Ed.)
    For the Schrödinger equation −d2u/dx2+q(x)u=λu on a finite x-interval, there is defined an "asymmetry function" a(λ;q), which is entire of order 1/2 and type 1 in λ. Our main result identifies the classes of square-integrable potentials q(x) that possess a common asymmetry function. For any given a(λ), there is one potential for each Dirichlet spectral sequence. 
    more » « less
  3. Social media data have been increasingly used to study biomedical and health-related phenomena. From cohort-level discussions of a condition to population-level analyses of sentiment, social media have provided scientists with unprecedented amounts of data to study human behavior associated with a variety of health conditions and medical treatments. Here we review recent work in mining social media for biomedical, epidemiological, and social phenomena information relevant to the multilevel complexity of human health. We pay particular attention to topics where social media data analysis has shown the most progress, including pharmacovigilance and sentiment analysis, especially for mental health. We also discuss a variety of innovative uses of social media data for health-related applications as well as important limitations of social media data access and use. 
    more » « less
  4. This paper considers the latent Gaussian graphical model, which extends the Gaussian graphical model to handle discrete data as well as mixed data with both continuous and discrete variables by assuming that discrete variables are generated by discretizing latent Gaussian variables. We propose a modified expectation‐maximization (EM) algorithm to estimate parameters in the latent Gaussian model for binary data. We also extend the proposed modified EM algorithm to the latent Gaussian model for mixed data. The conditional dependence structure can be consequently constructed by exploring the sparsity pattern of the precision matrix of the latent variables. We illustrate the performance of our proposed estimator through comprehensive numerical studies and an application to voting data of the United Nations General Assembly. 
    more » « less